Proactive Supply Chain Performance Management with Predictive Analytics
نویسنده
چکیده
Today's business climate requires supply chains to be proactive rather than reactive, which demands a new approach that incorporates data mining predictive analytics. This paper introduces a predictive supply chain performance management model which combines process modelling, performance measurement, data mining models, and web portal technologies into a unique model. It presents the supply chain modelling approach based on the specialized metamodel which allows modelling of any supply chain configuration and at different level of details. The paper also presents the supply chain semantic business intelligence (BI) model which encapsulates data sources and business rules and includes the data warehouse model with specific supply chain dimensions, measures, and KPIs (key performance indicators). Next, the paper describes two generic approaches for designing the KPI predictive data mining models based on the BI semantic model. KPI predictive models were trained and tested with a real-world data set. Finally, a specialized analytical web portal which offers collaborative performance monitoring and decision making is presented. The results show that these models give very accurate KPI projections and provide valuable insights into newly emerging trends, opportunities, and problems. This should lead to more intelligent, predictive, and responsive supply chains capable of adapting to future business environment.
منابع مشابه
The impact of interwoven integration practices on supply chain value addition and firm performance
Drawing on the supply chain (SC) management literature, this article conceptualizes and empirically tests a framework that shows how both external and internal integration practices are significant and positively associated with SC value addition and firm performance. The framework also tests the impact of value addition as a reinforcing factor on firm performance. The outcome of this investiga...
متن کاملGreen Supply Chain Management Practices’ Effect on the Performance of Turkish Business Relationships
The main aim of the study is to examine the influence of both external and internal actors on green supply chain management (GSCM) practices. By the way, this paper is to provide a first-hand understanding about the procedures taken by Turkish business firms and their logistics providers and supply chain business firms to operate in an environmental friendly supply chain. The result of this res...
متن کاملData Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management
W e illuminate the myriad of opportunities for research where supply chain management (SCM) intersects with data science, predictive analytics, and big data, collectively referred to as DPB. We show that these terms are not only becoming popular but are also relevant to supply chain research and education. Data science requires both domain knowledge and a broad set of quantitative skills, but t...
متن کاملBusiness Analytics for Supply Chain: a Dynamic-Capabilities Framework
Supply chain management has become more important as an academic topic due to trends in globalization leading to massive reallocation of production related advantages. Because of the massive amount of data that is generated in the global economy, new tools need to be developed in order to manage and analyze the data, as well as to monitor organizational performance worldwide. This paper propose...
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014